CXVI.-Differential Potentiometric Titration. Part II. Refined Methods (Methods II and III). By Bernard Cavanagh.

1. An Equation to the Titration Curve.-In considering the procedure by which the highest degree of precision is to be obtained, it will be convenient to confine attention in the first place to the typical case of the titration of a chloride by means of silver nitrate.

The extension to other titrations depending on the combination or interaction of ions of like valency will then be obvious.

If s^{2} is the activity product of silver chloride (so that s is practically the solubility in pure water), c^{\prime} and c are the concentrations and γ^{\prime} and γ the activity coefficients of silver and chloride ions, respectively,

$$
\begin{equation*}
c \cdot \gamma \cdot c^{\prime} \cdot \gamma^{\prime}=s^{2} \tag{1}
\end{equation*}
$$

So long as the reagent can be considered to react completely with the titrated solution, no appreciable amount of silver ion remaining free, the quantity M c.c. of reagent still required must be chemically equivalent to the whole of the free chloride ion, i.e., there must be $M n$ mg.-equivs. of free chloride ion present, n being the normality of the reagent solution. In view of the presence of a precipitate, however, it cannot be assumed that the whole of this is in solution, for a certain fraction of it $(1-\theta)$, will, in general, be adsorbed by the precipitate [although in the titration of very dilute solutions, to which the refined method chiefly applies, the amount of precipitate is slight and the fraction ($1-\theta$) probably very small-compare preceding paper, Section 7]. The concentration c will therefore be $M n \theta / V, V$ being the volume of solution, i.e.,

$$
\begin{equation*}
M n=c V / \theta \tag{2}
\end{equation*}
$$

When the end-point is closely approached, however, the free silver ion can no longer be neglected. Suppose the fraction ($1-\theta^{\prime}$) of the total free silver ion is in the adsorbed condition, then the amount of reagent required will be reduced by the corresponding amount $c^{\prime} V / \theta^{\prime}$, so that

$$
\begin{equation*}
M n=c V / \theta-c^{\prime} V / \theta^{\prime} \tag{3}
\end{equation*}
$$

The potential of a (reversible) silver electrode dipping in the solution is (at constant temperature)

$$
\begin{equation*}
E=\mathrm{constant}-R T / F \cdot \log c^{\prime} \gamma^{\prime} \tag{4}
\end{equation*}
$$

whilst that of a chloride electrode is

$$
\begin{equation*}
E=\text { constant }+R T / F \cdot \log c \gamma \tag{5}
\end{equation*}
$$

and from equations (1), (3), and either (4) or (5), one obtains rigorously,
$\frac{M n \sqrt{\gamma \gamma^{\prime} \theta \theta^{\prime}}}{2 s\left(V_{e}-\bar{M}\right)}=\sinh \left[\frac{F}{\bar{R} T^{(}}\left(E-E_{e}\right)+\frac{1}{2} \log \frac{\gamma^{\prime} \gamma_{e}}{\gamma \gamma_{e}}+\frac{1}{2} \log \frac{\theta^{\prime} \theta_{e}}{\theta \theta_{e}^{\prime}} \pm \log \frac{s}{s_{c}}\right](6)$
where the suffix e denotes the end-point value of a quantity, and, of the alternative signs, the positive is obtained by using equation (4) and the negative by using equation (5). In this equation, apart from s and the coefficients $\gamma, \gamma^{\prime}, \theta, \theta^{\prime}$, whose variations can be kept
small, the only variables at constant temperature are M and E, and both variables may have any values, positive or negative.

This exact and complete equation to the titration curve is of the form

$$
\begin{equation*}
X=\sinh U \tag{7}
\end{equation*}
$$

which lends itself to mathematical treatment, with results which are immediately useful, since hyperbolic functions are fully tabulated. It is applicable (when suitable electrodes are available) to (a) other precipitations of insoluble uni-univalent salts if the appropriate activity product s is used; (b) precipitations of $v-v$-valent insoluble salts if $v F$ and n / v are substituted for F and n, respectively; (c) the titration of strong acid and alkali (in the complete absence of carbon dioxide, ammonia, quinhydrone, etc.)-the adsorption factors disappear, and s represents the activity product of water; and (d) the last titration in the presence of carbon dioxide, etc., with certain limitations.
2. For present purposes equation (6) may be written in the simplified form
where

$$
\begin{equation*}
M n / 2 S\left(V_{e}-M\right)=\sinh F\left(E-E_{\epsilon}\right) / R T \tag{8}
\end{equation*}
$$

S^{2} being, as it were, an "apparent" solubility product of silver chloride (including both dissolved and adsorbed) in the solution at the stage under consideration. This approximation involves neglecting (a) the term $\pm \log s / s_{e}$, which allows for variation in s during the course of a titration (due, for instance, to change in the condition of the precipitate), and (b) the other two logarithmic terms.

In the case chiefly considered here, that of the silver chloride titration, it would seem reasonable to expect that the presence of the silver chloride-coated electrodes (see J., 1927, 2207) would tend to accelerate the establishment of true equilibrium (with the minimum value of s) and make s effectively a constant, and this appears to be borne out by the steadiness and permanence of the potentials rapidly set up. In the case of the bromide titration, conditions are almost equally good (with the silver bromide-coated electrodes), but in the iodide titration, in the neighbourhood of the end-point the establishment of a permanent potential is very slow.

As regards the other two neglected terms it may be noted that γ^{\prime} / γ, for instance, is the ratio of the activity coefficients of univalent ions in the same solution, and that the first logarithmic term, representing half the relative change in this ratio on passing over to the end-point, will always be very small. Similar considerations apply to the second logarithmic term.

Table I.

Figures in heavy type, $\sinh (F / R T)$. E. Figures in ordinary type,
$\operatorname{sech}(F / R T) . E\left(\right.$ at $\left.17^{\circ}\right)$.

$\begin{aligned} & E \text { in } \\ & \text { m. } \mathrm{V} . \end{aligned}$	-0.	$\cdot 1$.	-2.	-3.	-4.	$\cdot \overline{5}$	-6.	$\cdot 7$.	-8.	. 9.
	0.000	0.004	0.008	0.012	0.016	0.020	0.024	0.028	0.032	0.036
0	1.000	1.000	1.000	0.999	0.999	0.9998	0.999_{7}	0.9998	$0 \cdot 9995$	0.9994
	0.040	0.044	0.048	0.052	0.056	0.060	0.064	0.068	0.072	0.078
1	().9992	0.999	$0.998{ }_{8}$	$0.998{ }_{6}$	0.9984	0.9988	$0 \cdot 998$	$0 \cdot 9977$	0.9974	0.9971
	0.080	0.084	0.088	0.092	0.096	$0 \cdot 100$	$0 \cdot 104$	$0 \cdot 108$	$0 \cdot 112$	$0 \cdot 116$
2	${ }^{0} 0.996_{8}$	0.996_{5}	0.996_{1}	0.995_{8}	$0 \cdot 995_{4}^{4}$	0.995	$0.994{ }^{\text {a }}$	0.994	0.993,	${ }^{0.993} 3$
3	0.120 0.992	0.124 0.9924	0.128 0.991.	0.132 0.9913	0.136 0.9908	0.140 0.990	0.145 0.9897	0.149 0.989	0.153 0.988	0.157 0.988
	$0 \cdot 161{ }^{8}$	$0 \cdot 155$	0.169	0.173^{3}	0.177 ${ }^{8}$	$0 \cdot 181{ }^{3}$	$0.185{ }^{7}$	$0 \cdot 189$	$0 \cdot 193$	$0 \cdot 197$
4	0.987_{3}	0.9867	$0 \cdot 9861$	0.9854	0.98.17	0.984	0.983 3	0.982.	0.9818	0.981_{1}
	0.202	0.205	0.210	0.214	0.218	0.222	0.226	0.230	0.234	0-238
5	$0 \cdot 980_{3}$	0.9795	0.978	$0.97{ }^{0}$	0.977_{1}	0.9763	0.975	0.974 ,	0.9737	$0.97 \mathrm{~s}$
	0.242	$0.246{ }^{5}$	0.251	$0 \cdot 255$	0.259	0.263	$0 \cdot 26{ }^{7}$	$0 \cdot 271$	$0 \cdot 275$	0.280^{3}
6	0.971 ,	0.971	0.970	0.9691	0.978	${ }^{1} \cdot 9.967_{1}$	$0 \cdot 966_{1}$	0.9651	$0 \cdot 9641$	$0 \cdot 96 \ddot{3}_{1}$
	0.284	0.288	0.292	0.296	0.300	0.305	0.309	0.313	$0 \cdot 317$	0.331
7	0.962	0.961	0.959	$0.95{ }^{8}$	$0 \cdot 957$	$0 \cdot 956{ }^{\text {d }}$	0.955	$0.954{ }^{4}$	0.953_{2}	$0.95{ }^{1} 1$
	0.325	$0 \cdot 330$	0.334	0.338	0.342	$0.347{ }^{7}$	0.351	0.355	0.359	0.304
8	$0 \cdot 950$	0.949_{7}	$0 \cdot 948{ }_{5}$	1).9473	0.946_{1}	0.914,	0.9436	$0.94{ }^{4}$	0.941_{1}	$0 \cdot 9396$
	0.368	0.372	$0 \cdot 376$	0.381	0.385	$0 \cdot 389$	0.394	0.398	0.402	0.406
9	0.9385	0.937_{2}	$0.93 \overline{0}_{0}$	0.934_{6}	0.933_{2}	0.931 ,	0.930_{5}	$0 \cdot 9292$	$0 \cdot 927^{6}$	$0 \cdot 926$
	0.411	0.415	0.419	0.424	0.428	0.432	0.437	0.441	0.446	0.450
10	0.925	$0 \cdot 923{ }^{6}$	0.922	$0 \cdot 920_{7}$	0.9193	0.917_{8}	0.916_{4}	0.914 ,	0.913_{4}	0.911.
	0.454	0.459	$0 \cdot 463$	0.468	0.4772	0.476	0.481	0.485	0.490	0.494
11	$0 \cdot 910_{4}$	$0 \cdot 908$	0.9074	$0 \cdot 905$,	0.9049	$0 \cdot 90{ }^{2}$	0.9012	$0 \cdot 8997$	$6.89 \mathrm{~S}_{1}$	0.896_{5}
	0.499	0.503	0.508	0.512	0.517	0.521	0.526	0.530	0.535	0.539
12	0.894	0.8933	U.8917	0.8901 0.557	0.888_{5}	0.886_{8}	$0 \cdot 885_{2}$	0.883_{5}	0.881 ,	0.880_{2}
	0.544	0.548	0.553	0.557^{1}	0.562	0.566	0.571	$0.576{ }^{\text {a }}$	0.580	0.585
13	0.878 0.590	${ }^{0.8766_{8}}$	0.875_{3}	$0_{0.873}$	${ }^{0.8717}$	0.879	0.8683	0.866	$0.864,$	${ }_{0}^{0.8631}$
	0.590	0.594	0.599	0.604	0.608	0.613	0.618	0.622	0.627	$0 \cdot 632$
14	0.8614	$0 \cdot 869$	$0 \cdot 85{ }^{0}$	0.856_{1}	0.854_{3}	0.852_{5}	0.850_{8}	$0 \cdot 849$	0.847_{2}	8454
	0.637	0.641	0.646	0.651	0.656	0.660	0.665	0.670	0.675	0.680
15	$0 \cdot 843{ }^{\text {c }}$	0.8417	0.839	${ }^{0.8388}$	0.836_{3}	0.834_{4}	0.833^{4}	0.830_{7}	0.828.	$0 \cdot 827$
	0.685	0.690	0.694	0.699	0.704	$0 \cdot 709$	$0 \cdot 714$	0.719	0.724	0.729
16	$0 \cdot 825_{2}$	0.823,	0.8214	0.819_{5}	0.817 ?	0.815_{8}	$0 \cdot 813 \%$	0.812	0.811_{1}	$0 \cdot 808$,
	0.734	0.739	0.744	0.749	0.754	0.759	0.764	0.769	$0.774{ }^{1}$	0.7779
17	$0 \cdot 806_{3}$	0.804_{4}	0.802_{5}	$0.801{ }^{0}$	$0.798{ }^{8}$	$0 \cdot 7967$	$0 \cdot 7948$	0.792 s	$0 \cdot 790$	$0 \cdot 789$
	0.784	0.789	0.794	0.799	0.804	0.809	0.815	0.820	0.825	0.830
18	0.787	0.785_{1}	0.7831	0.7812	0.779 0.858	${ }^{1} 1.777_{3}$	${ }^{0.775}$	0.7734	$0.77{ }^{0.84}$	${ }_{0.769}^{4}$
	0.835	0.840	0.846	0.851	0.856	0.862	0.867	0.872	0.877	0.883
19	0.7675	0.765_{5}	$0 \cdot 763_{5}$	$0 \cdot 761_{6}$	0.769	$0 \cdot 75{ }^{6} 6$	0.755_{6}	0.753_{7}	0.7517	$0 \cdot 749_{7}$
	0.888	0.894	0.899	0.904	0.910	0.915	0.920	0.926	0.981	0.937
20	$0 \cdot 747_{7}$	0.743^{3}	0.743_{7}	0.741_{7}	0.739_{7}	0.737_{8}	$0.73{ }^{0}$	${ }^{0.733} 8$	$0 \cdot 731{ }^{8}$	0.7298
	0.942	0.848	0.953	0.959	0.964	0.970	0.976	0.981	$0.98{ }^{78}$	0.992
21	$0_{0.727}^{8}$	${ }^{0.72 .88}$	0.723 s	0.721^{8} 1.015	${ }_{0.719}{ }^{1.091}$	$0.71 \%^{8}$ 1.029	0.715_{8} 1.039	0.713_{8} 1.038	0.711_{8} 1.044	0.7098 1.050
	0,988	1.004	1.009	1.015	1.021	1.027	1.032	1.038	1.044	1.050
29	0.7078 1.055	0.705_{3} 1.061	0.703 .3 1.067	0.7015 1.073	0.69988 1.079	${ }^{0.697}{ }^{1.085}{ }^{8}$	$0.69)_{8}$ 1.091	0.693 1.0978	${ }_{0}^{0.691}{ }_{1} 102{ }_{8}$	0.689 1.108
23	$0_{0.687}^{8}$	1.685	$\mathrm{U}^{0.685}{ }_{8}$	0.681_{8}	${ }^{1} 1.679_{8}$	0-67\%	$\mathrm{O}_{1} 6.615_{8}$	0.673_{8}	0.671.	0.669.
	1-114	1.120°	$1 \cdot 126$	1.132	1.139	1.145	1.151	$1.15{ }^{7}$	1-163	1.169
24	$0 \cdot 667$,	0.6659	$0 \cdot 663_{9}$	0.661.	0.659	0.657	$0 \cdot 656$	0-654	$0 \cdot 652$	$0 \cdot 6 \overline{0}$
	$1 \cdot 175$	1.181	$1 \cdot 188$	1.194	1.200	$1 \cdot 206$	1-213	1.219	$1 \cdot 225$	1.232
25	$0-648$	$0 \cdot 646_{1}$	0.644_{1}	$0.64 \%_{1}$	$0 \cdot 640_{2}$	0.638	${ }^{0} \cdot 6366_{2}$	${ }_{0} 0.634_{3}$	${ }^{0} \cdot 639_{3}$	$0 \cdot 6319$
	$1 \cdot 238$	1.244	1.251	$1.25{ }^{77}$	1.264	1.270	1.276	1.283	1.289	1.296
26	$0 \cdot 6284$	0.6264	$0 \cdot 6.44_{5}$	$0 \cdot 622_{5}$	$0 \cdot 620^{6}$	$0 \cdot 618{ }_{7}$	${ }^{0} 6.616_{7}$	$0 \cdot 614_{8}$	$0 \cdot 61.28$	$0 \cdot 610$
	$1 \cdot 308$	1.309	$1 \cdot 315$	$1-322$	1.329	1.336	1.342	1.349	1.356	1.363
27	$0 \cdot 609$	0.607	$0 \cdot 60 \overline{5}_{1}$	$0^{0.6039}$	$0 \cdot 601{ }^{\text {s }}$	$\mathrm{U}^{1} \cdot 599{ }_{3}$	0.5974	0.595_{5}	$0.593{ }_{6}$	$0 \cdot 591{ }^{\text {, }}$
	1.369	1.376	1.383	1.390	1.397	1.403	1.410	1.417	1.424	1.431
28	1.589_{8}	0.587,	0.586	0.584_{1}	$0 \cdot 582^{2}$	$0 \cdot 580{ }_{3}$	0.578	$0 \cdot 5765$	$0 \cdot 574$,	$0 \cdot 572{ }^{\text {a }}$
	1.438	1.445	1.452	1.459	1.466	1.474	1.481	1.488	$1 \cdot 495$	1.502
29	(1.570,	0.569	0.567_{1}	$0 \cdot 565_{3}$	U.563	$0.561{ }_{5}$	$0 \cdot 5597$	0.557_{8}	$0 \cdot 556$	0.554_{1}
	1.509	1.517	1.524	1.531	1.539	1.546	1.553	1.561	$1 \cdot 568$	1.576
30	$0 \cdot 6 \overline{0} 2_{3}$	0.550_{4}	$0 \cdot 548{ }_{6}$	$\mathrm{U}^{1.546}{ }_{8}$	0.5449	$0 \cdot 543{ }_{1}$	$0 \cdot 541_{3}$	$0.539{ }^{5}$	$0 \cdot 3377$	0.5355_{9}
	1.583	1591	1.598	1.606	1.613	$1 \cdot 621$	1.629	1.636	1.644	$1 \cdot 652$
31	6.53 .4	$0.53 \mathrm{~m}^{2}$	0.5304	$0 \cdot 528{ }_{6}$	$0 \cdot 526_{9}$	$0 \cdot 59{ }^{1}$	${ }^{0} \cdot 523_{3}$	$0.521{ }^{5}$	$0 \cdot 519$?	$0 \cdot 517_{9}$
	1.659	1.667^{7}	1.675	1.683	1.691	1.698	1.706	1.714	1.722	$1 \cdot 730$
32	1.5168 1.738	${ }^{1} 1.514_{4}$	0.512.	0.5109 1.762	$\begin{aligned} & 0.509_{1} \\ & 1.7720 \end{aligned}$	$0.5074{ }_{4}$ 1.7799	$\begin{aligned} & 0.505 \\ & 1.78 y^{\circ} \end{aligned}$	0.503, 1.795	0.502 1.808	$\begin{aligned} & 0.500_{4} \\ & 1.811 \end{aligned}$
3.:	1.736 0.498	1.746 1.497	1.754 0.495	1.762 0.493	1.770 0.491_{8}	1.779 0.4901	1.787 0.4884	1.795 0.486_{7}	1.803 0.485	$1.811{ }^{0.483,}$
	$1.820{ }^{7}$	1.828	1.836	$1.845{ }^{5}$	$1.853{ }^{8}$	$1.862{ }^{1}$	1.870	$1.879{ }^{7}$	1.887	1.896
-4	$0 \cdot 481_{\text {y }}$	$0 \cdot 479$	1). 4788_{2}	0.476	0.474 ,	(1).473.	$0 \cdot 1715$	15.46:)	$0 \cdot 468_{2}$	(1).4664

				A	E	nta				
$\begin{aligned} & E \text { in } \\ & \text { m. } \end{aligned}$	$\cdot 0$.	$\cdot 1$.	'9.	3.	4.	-5.	$\cdot 6$.	$\cdot 7$.	-8.	9.
	1.904	1.913	1.922	1.930	1.939	1.948	1.956	1.965	1.974	1.983
35	$0 \cdot 464$.	$0 \cdot 463{ }_{3}$	0.461 。	$0 \cdot 4611$	U-4584	0.4567	$0 \cdot 455_{1}$	$\mathrm{O}^{-4.43}{ }_{5}$	$0 \cdot 451$,	0-450 ${ }_{3}$
	1.992	$2 \cdot 001$	2.010°	2.028	2.028	2.087	2.048	2.055	2.064	2.073
36	$0 \cdot 448$	1).4471	$0 \cdot 440_{5}$	$0 \cdot 443{ }_{9}$	$0 \cdot 443_{3}$	$0 \cdot 440_{7}$	0.4391	0.4375	$0 \cdot 436$	$0 \cdot 434_{4}$
	2.083	2.092	2.101	$2 \cdot 111$	$2 \cdot 130$	$2 \cdot 129$	$2 \cdot 139$	$2 \cdot 148$	2.158	$2 \cdot 167$
37	$0 \cdot 4328$	0.4313	(1)429,	$0 \cdot 42 \mathrm{~S}_{2}$	$0 \cdot 426_{8}$	$0 \cdot 425{ }_{1}$	$0 \cdot 423{ }_{B}$	$0 \cdot 422$	$0 \cdot 420{ }_{5}$	0.419
	$2 \cdot 177$	$2 \cdot 186$	$2 \cdot 196$	2.206	2.215	2.225	2.235	2.245	2.255	$2 \cdot 264$
38	0.417_{5}	$0 \cdot 415$,	$0 \cdot 414_{4}$	$0 \cdot 41{ }^{4}$	0.411_{4}	$0 \cdot 4099$	$0 \cdot 4084$	$0 \cdot 4069$	$0 \cdot 405_{5}$	$0 \cdot 404$
	2.274	2.284	2.294	2.304	$2 \cdot 314$	2.324	$2 \cdot 335$	2.345	2.355	2.365
39	$0 \cdot 402{ }_{5}$	11.401	$0 \cdot 339{ }^{\text {c }}$	$0 \cdot 3981$	U-396 ${ }^{\text {c }}$	$0 \cdot 395$	$0 \cdot 3937$	$0 \cdot 392$	$0 \cdot 390_{8}$	$\mathrm{U}^{3} 389{ }_{4}$
	2.376	2.386	$2 \cdot 396$	2.407	2.417	2.428	2.438	2.449	2.459	2.470
40	y. 388	1) 3866_{5}	${ }_{0} \cdot 3.385_{1}$	${ }^{0.383 .3}$	${ }^{0.384} 3$	$0.280{ }^{\text {a }}$	$0 \cdot 379{ }^{5}$	1.3781	$0 \cdot 376$	$1.37 i_{3}$
	2.481	$\mathbf{2 . 4 9 1}$	2.502	$2 \cdot 513$	2.524	2.535	2.546	2.556	$2 \cdot 567$	2.579
41	0.3739	${ }^{0.372}{ }^{5}$	1)-3711	0.369?	$0 \cdot 3684$	$0 \cdot 367$	$0 \cdot 365{ }_{6}$	0.3648	$0 \cdot 364{ }^{2}$	${ }^{10} 5.361{ }^{6}$
	2.590	2.601	$2 \cdot 612$	2.623	2.634	$2 \cdot 646$	$2 \cdot 657$	2.668	2.680	2.691
43	$0 \cdot 360^{2}$ $2 \cdot 703$	U-35888 $2 \cdot 714$		0.356_{2} 2.738	0.3548 2.749	${ }^{0.353 .388}$	${ }^{11.352} 2{ }^{2} 773{ }^{2}$	$0 \cdot 350_{9}$ 2.784	${ }^{0} 2 \cdot 3496{ }^{6}$	$(1.348$ 2.808
4.3	0.347	${ }_{1} 1.345^{2}$	0.344_{4}	${ }^{0} \cdot 343_{1}$	${ }^{0} .341_{8}$	1.340_{5}	${ }_{0}{ }^{2} 3393$	0.338	${ }_{0} 0.336{ }_{7}$	(1.335 ${ }_{\text {\% }}$
	2.820	2.832	2.844	2.856	2.868	2.881	2.893	2.905	2.917	2.930
41	+1.3342	0.33.9	0.3317	$1 \mathrm{l} .33{ }_{4}$	(1)329.	$0 \cdot 3279$	$0^{1.326}{ }_{7}$	1.325_{5}	$0 \cdot 32.42$	0.323
	2.942	2.955	2.967	2.980	2.992	3.005	3.018	3.080	3.043	$3 \cdot 056$
4.	$0^{0.321} 1_{8}$	0.320 .0	1) 319	(). 318	$0 \cdot 317$	${ }^{0} \cdot 315_{8}$	$0 \cdot 314{ }^{6}$	$\mathrm{O}_{3} \cdot 3133_{4}$	0.312^{2}	0.311
	8.089	3.082	3.095	$3 \cdot 108$	$3 \cdot 121$	$3 \cdot 134$	$3 \cdot 14{ }^{\text {r }}$	$3 \cdot 160$	$3 \cdot 174$	$3 \cdot 187$
415	1).3098	11.308_{6}	$0^{0.30975}$	$0 \cdot 306{ }_{3}$	${ }^{0} 1.305_{2}$	11.304 3.208	$0^{1 \cdot 30288}$	0.301,	$0 \cdot 300{ }^{3}$	${ }^{\text {0) }} \mathbf{3} \cdot 2934$
	$3 \cdot 200$	$3 \cdot 214$	$3 \cdot 227$	$3 \cdot 241$	3.255	$3 \cdot 268$	$3 \cdot 282$	3.296	$3 \cdot 309$	3-323
47	1) $3 \cdot 29 \mathrm{~K}_{2}$	$11 \cdot 2971$ 3.351	$0 \cdot 294$ 3.365	0.2948 3.379	11.293 3.393	(1).292 3.408	$(1.2915$ 3.422	0.4904 3.436	$\begin{aligned} & 0 \cdot 289_{3} \\ & 3.456 \end{aligned}$	$\begin{aligned} & 0.288, \\ & 3.465 \end{aligned}$
	3.337 0.287	$3 \cdot 351$	$3 \cdot 365$	$3 \cdot 379$	3					
48	3.479	3.494 ${ }^{\text {9 }}$	3.508	$3 \cdot 523$	$3 \cdot 538{ }^{7}$	$3.552{ }^{5}$	3.577^{5}	$3.582{ }^{4}$	3.597^{4}	$3.62{ }^{3}$
49	U. 276_{2}	$10.27{ }^{\text {j }}$	$0 \cdot 2741$	$0 \cdot 273_{1}$	U.273	U.271	(0.269	$0 \cdot 668$,	(1.2679	$0 \cdot 26 \mathrm{i}^{\text {\% }}$
	$3 \cdot 627$	3.642	3.657	3.672	$3 \cdot 688$	3.703	3.718	3•734	$3 \cdot 749$	$3 \cdot 765$
50	$0 \cdot 265_{8}$	0.2648	$\mathrm{U}^{-263} 3_{8}$	$0^{0.2627}{ }^{7}$		${ }^{0.260}{ }_{7}$	$0 \cdot 2597$	${ }^{0} \cdot 2.258{ }^{\text {a }}$	${ }^{0.257} 3$	
	3.780	$3 \cdot 796$	3.812	3.827	3.843	3.859	3.875	3.891	3.907	3.924
51	$0 \cdot 255_{7}$	0.2547	$\mathrm{U}^{4} 253_{8}$	$0 \cdot 252_{8}$	$0 \cdot 251_{8}$	$\left.0^{0.250}\right)_{8}$	$0 \cdot 249$	$0 \cdot 248{ }_{9}$	0.2479	U.247
	3.940	3.956	3.972	3.989	4.005	4.022	4.038	4.055	4.072	4.039
52	$0 \cdot 446$ 4.108	${ }^{11} 4.245_{1}$	$0 \cdot 944_{1}$	$0 \cdot 243{ }_{3}$	0.242_{3}	$0 \cdot 241{ }_{3}$	0.2404	${ }^{0.2} 3.294$	0.2385	$0^{0.237}{ }^{\text {a }}$
	$4 \cdot 106$	4.122	4.139	$4.15{ }^{\prime 2}$	4.174	4.181	4.208	4.225	4.248	4.260
53	$0 \cdot 2367$	$0 \cdot 3357$	$0 \cdot 234_{8}$	0.233_{9}	$0 \cdot 233$	$0 \cdot 2321$	$0 \cdot 231_{2}$	$0^{0.23+5}{ }_{3}$	(1)2994	$1.29 \mathrm{~K}_{5}$
	$4 \cdot 278$	4.216	4.313	$4 \cdot 331$	4.349	4.367	4.385	4.403	4.421	4.439
$5 \cdot 4$	$0 \cdot 2 \cdot 7_{6}$	$0 \cdot 2 \cdot 7_{7}$	$0 \cdot 225_{9}$	$0 \cdot 225$	$0 \cdot 2 \cdot 24_{1}$	$0 \cdot 223{ }_{2}$	$0 \cdot 222_{4}$	$0 \cdot 221_{5}$	$0 \cdot 220{ }_{6}$	$0 \cdot 2198$
	$4 \cdot 457$	4.475	4.494	4.512	4.531	4.549	4.568	4.587	4.606	$4 \cdot 624$
55	$9 \cdot 2189$	$0 \cdot 218{ }_{1}$	$0 \cdot 217$	$0 \cdot{ }^{0} 16$	$0 \cdot 215_{5}$	$0 \cdot 2147$	$0 \cdot 213_{8}$	$0 \cdot 213$	(1) 2123	$0 \cdot 211{ }_{4}$
	4.643	$4 \cdot 682$	$4 \cdot 682$	4.701	4.720	4.739	$4 \cdot 759$	4.778	$4 \cdot 798$	4.817
56	$0 \cdot 210_{5}$	$0 \cdot 2097$	$0 \cdot 208$	$0 \cdot 2081$	$0 \cdot 2073$	$0 \cdot 206{ }_{5}$	$0 \cdot 205_{6}$	U.3048	U.204	$0 \cdot 203$
	$4.837{ }^{\circ}$	4.857	4.877	4.8977	$4.91{ }^{17}$	4.937	4.957	$4.97{ }^{10}$	4.998	$5 \cdot 018$
57	$0^{0} \cdot 20{ }^{4}$	0.201?	0.200	$0 \cdot 200_{1}$	${ }^{0} \cdot 199^{3}$	$0 \cdot 198{ }_{5}$	0.1977 5.163	0.197 5.185	0-196	${ }^{19} \cdot 195_{4}$
	$5 \cdot 039$	5.059	$5 \cdot 070$	$5 \cdot 101$	5-122	5-142	5-163	$5 \cdot 185$	$5 \cdot 206$	$5 \cdot 227$
58		${ }^{0} \cdot 193$.	$0^{0 \cdot 1931}$	${ }^{0} 5 \cdot 192$	${ }_{5} \mathbf{5} \cdot 1918{ }^{\text {c }}$	0.190_{9} 5.356	0.1901 5.378	0.189 5.400	0.188 5.480	(0.187
	$5 \cdot 248$	$5 \cdot 270$	5-291	$5 \cdot 313$	5-334	$5 \cdot 356$	$5 \cdot 378$	$5 \cdot 400$	5-422	5.444
59	0.187.2	$0 \cdot 186$	$0 \cdot 183_{7}$	1).18.)	$0 \cdot 184_{3}$	$(1.1835$	$0 \cdot 182$	$0 \cdot 182_{1}$	11.1814	$0 \cdot 180{ }_{7}$
	$5 \cdot 466$	5.489	5.511	5.533	5.556	5.578	$5 \cdot 601$	5.624	5.647	5.670
60	0.180	(1.179 ${ }^{\text {a }}$	$0 \cdot 178$	$0_{5.1778}$	${ }_{5}^{0.1771}$	${ }^{0.176}$	${ }_{5}^{0.17538}$	${ }^{0.175} 5$	${ }^{0.1744}$	${ }^{0.17 \%}$
	$5 \cdot 693$	5.716	5.739	$5 \cdot 763$	$5 \cdot 786$	5.810	5.833	5.857	5.881	5.905
61	$0 \cdot 173$	(1) 172,	().1716	¢171	$0 \cdot 170{ }_{3}$	$0 \cdot 1696$	$0 \cdot 169$	${ }^{0}-1683$	$0 \cdot 167{ }^{6}$	$0 \cdot 167$
	$5 \cdot 929$	5.953	$5.977{ }^{\circ}$	6.001	6.026	6.050	6.075	6.099	6.124	6-149
62	$\mathrm{O}^{-166}{ }_{3}$	${ }^{1.169 \%}$	0.168	$0 \cdot 164_{4}$	$0^{0.1635}$	${ }^{4.1651}$	$0 \cdot 16{ }^{4}$	$0 \cdot 1618$	${ }^{0} \cdot 1612$	(1.160 ${ }_{5}$
	6.174	6.199	6.224	6.250	6.275	$6 \cdot 300$	6.326	$6 \cdot 352$	6-377	6.403
63	6.1599 6.429		0.1588 6.489	$0 \cdot 158$ 6.508	${ }^{0} \cdot 1574{ }^{6}$	${ }^{0.156158}$	${ }_{0}^{0.156}{ }^{6}$	${ }^{6.155} 5$	0.154\%	${ }_{0} 0.154_{3}$
	6.429	6.455	6.482	6.508	$6 \cdot 534$	6.561	6.587	6.614	6.641	$6 \cdot 688$
64	$0^{1 / 153} 7$	$0 \cdot 153_{1}$	$0 \cdot 15)_{5}$	$0 \cdot 151$,	$0 \cdot 151{ }_{3}$	$0 \cdot 150$	$0 \cdot 150{ }_{1}$	$0 \cdot 1495$	$0 \cdot 148$	$0 \cdot 148_{3}$
	6.695	6.722	6.749	6.7776	6.804	6831	6.859	3.887	6.915	6.943
65	${ }^{0} 1.1477$	$0 \cdot 147_{1}$	$0 \cdot 146{ }_{6}$	$0 \cdot 146$	${ }^{0.1454}$	${ }^{1)} 1444_{8}$	0.144 77.149	${ }^{0.143} 7$	0.1431 7.200	(1.14\%
	6.971	6.999	7.027	7.056	7.084	7.113	7.149	7.171	7.200	7-229
66	$0 \cdot 142$	$0 \cdot 1414$	$0 \cdot 140^{9}$	${ }^{1} \cdot 1440_{3}$	${ }^{19} 139_{8}$	$0 \cdot 1 \ddot{89} 9_{2}$	${ }^{0.1388}$	(1).138	11.137_{6}	0.137
	7.258	7.288	${ }^{7} 317$	7.347	7.376	7.406	7.436	7.466	7.496	7.527
* 7	$\mathrm{H} \cdot 1366_{5}$	${ }^{1)} 1.135_{8}$	${ }^{(1-135}{ }^{2}$	${ }^{0} \cdot 13.649^{9}$	${ }^{0.1343}$	${ }_{79} 1.133_{8}$	0.13383 7.742	${ }^{1-13327}$	${ }^{1} 1.132_{2}$	0.131 7.887^{2}
	7.557	7.588	$7 \cdot 618$	7.649	7.680	7.711	7.742	7.7744	7.805	7.837
6.5	${ }^{\text {(1) }} \mathrm{7} \cdot 1368{ }_{2}$	0.130 7.900	0.130_{1} y .932	0.129 .989 7.964	${ }_{7}^{0.1991}$	0.128. 8.028	$0 \cdot 1281$ 8.061	1.12768 8.093	${ }^{0.127}{ }_{1}$	0.126_{6} 8.159
	7.868	7.900	7.932	7.964	7.996	8.028 0.123	8.061 0.123	8.093	$8 \cdot 126$	$8 \cdot 159$ 0.121
	$0 \cdot 126_{1}$	$0 \cdot 125$	$0 \cdot 125_{1}$	$0 \cdot 124$.	$0 \cdot 124_{1}$	$0 \cdot 123{ }_{6}$	$0 \cdot 123_{1}$	$0 \cdot 122_{6}$	$0 \cdot 12{ }^{1}$	$0 \cdot 121$,
	$8 \cdot 192$	8.225	8.258	8-292	8.325	8.359	8.392	8.426	8.461	$8 \cdot 494$
70	(1)121,	0.120 8.563	$0 \cdot 120_{2}$	$0 \cdot 1198$	${ }^{0.119} 8$	${ }^{0.11788}$	${ }_{8}^{0.118} 8$	$0 \cdot 117_{8}$	${ }^{0.117}{ }_{4}$	0.1169
	8.529	8.563	$8 \cdot 598$	$8 \cdot 682$	8.667	8.702	8.737	8.7r72	8.808	8.843
71	${ }^{1} \cdot 116_{5}$	0.117	$11.11 i_{3}$	$0 \cdot 1151$	U.114 ${ }^{6}$	0.111_{2} 9.059	${ }^{9} 9.113^{9}$	10.113 ${ }^{\text {a }}$	$0 \cdot 112^{8}$	
	8.879	8.915	8.951	$8 \cdot 987$	9.023	9.059	9.096	9-133	$9 \cdot 170$	9.207
72	0.111.	(1.111s	$0 \cdot 111$	U-111	$0 \cdot 110_{1}$	${ }^{11} 1097$	$0 \cdot 1093$	$0 \cdot 1088$	$0 \cdot 1084$	t).10x
	9.244	9.281	$9 \cdot 318$	$9 \cdot 356$	9.394	9-431	9.470	9.508	9.546	$9 \cdot 584$
3	U-107.	$0 \cdot 1071$	U.1067	$0 \cdot 1063$	0.1059	0.105,	0.105 9.858	$0 \cdot 104{ }^{\text {a }}$	${ }^{\text {o }}$-104 ${ }^{\text {a }}$	U.1038
	9.623	9.662	9-701	$9 \cdot 740$	9.779	$9 \cdot 819$	9.858	$9 \cdot 898$	9.938	9.978
74	$0 \cdot 103_{3}$	0.102,	$0 \cdot 1028$	0.1021	$0 \cdot 101_{2}$	$0 \cdot 1018$	$0 \cdot 100$	U.100:	$0 \cdot 1001$	$0.09 y_{2}$

In most of what follows, S is treated as constant during the course of any one titration, and the approximation in this form seems to be justified by experiment (see Section 11), but this point is further discussed in Section 13.
3. Equation (7) may be regarded as a substituted form of (8), where

$$
\begin{align*}
& X=M n / 2 S\left(V_{e}-M\right)=M n / 2 S V \tag{10}\\
& U=F\left(E-E_{c}\right) / R T=0 \cdot 04\left(E-E_{e}\right)_{17^{\circ}} \tag{11}
\end{align*}
$$

so that X represents the amount of reagent required, expressed in terms of the unit $2 S V / n$, whilst U represents the potential of the electrode reckoned from the end-point and in terms of the unit $R T / F$ (which is just 25 millivolts at 17°). Similarly for an earlier stage ($M^{\prime}, V^{\prime}, E^{\prime}$, as in Part I),
where

$$
\begin{align*}
X^{\prime} & =X+x=\sinh (U+u) . \tag{12}\\
X^{\prime} & =M^{\prime} n / 2 S\left(V_{e}-M^{\prime}\right)=M^{\prime} n / 2 S V^{\prime} \tag{13}\\
U+u & =F\left(E^{\prime}-E_{\epsilon}\right) / R T=F\left(E-E_{c}+\varepsilon\right) / R T . \tag{14}
\end{align*}
$$

and, for the differences, x and u,

$$
\begin{gather*}
u=F \varepsilon / R T=0.04 \varepsilon_{177^{\circ}} . \tag{15}\\
\text { and } x=m n V_{e} / 2 S V V^{\prime}=m n(1+M / V) / 2 S V^{\prime} \tag{16}
\end{gather*}
$$

which (when M / V is negligible) becomes

$$
\begin{equation*}
x \approx m n / 2 S V^{\prime} \tag{17}
\end{equation*}
$$

so that u is the potential change in terms of the unit $R T / F$ and is virtually an experimental quantity ($0.04 \varepsilon_{17^{\circ}}$), whilst x is the corresponding addition of reagent expressed in terms of the unit $2 S V V^{\prime} /$ $n V_{c}\left(\approx 2 S V^{\prime} / n\right)$, and is known, at least approximately, if S is known. For the precise evaluation of x when M / V is not negligible, a rough estimate of M is required (see Section 5). Finally, if $r=X / x$,

$$
\begin{equation*}
r=M V^{\prime} / m V_{\epsilon}=M(V-m) / m(V+M) \tag{18}
\end{equation*}
$$

or

$$
\begin{align*}
& M=r m /[1-m(1+r) / V][\text { compare Part I, equation (30) }] \tag{19}\\
& \approx r m(1+m / V)(\text { when } m / V \text { is small }) \tag{20}
\end{align*}
$$

Thus M, and therefore the result of the titration, is obtainable from the ratio r without knowledge of S. It is alternatively obtainable from X if S is known [see (10)].
4. Method II. Refined Method (S known).-In Fig. 1, X is represented graphically as a function of x and $\varepsilon_{17^{\circ}}(=25 u)$. In a somewhat different manner, Fig. 2 represents the ratio r as a function of the same quantities, the curves being curves of constant r. (The experimental values of x and ε_{17}. fix a point on this diagram, whose position on the scale formed by the curves gives the value
of r.) In this way Method I is extended to and beyond the endpoint, provided x is known, i.e., provided S is known.

Fig. 1.

Curves of constant x, the value of x being given by the number at the right-hand end of each curve; x is a quantity of reagent added, expressed in terms of the unit $2 S V V^{\prime} / n V_{e}\left(\approx 2 S V^{\prime} / n\right)$. Ordinates represent the resulting potential change $\epsilon_{17^{\circ}}$ (roughly corrected to 17°) in millivolts, and abscissæ the further amount (X) of reagent still required to reach the end-point ($X=0$), expressed in terms of the unit $2 S V / n$. For a given value of x, the corresponding curve (interpolated if necessary) enables the distance (X) from the end-point to be deduced from the potential change observed.

The functions represented in Figs. 1 and 2, viz.,

$$
\begin{equation*}
X= \pm \frac{1}{2}\left[x^{2} \operatorname{coth}^{2} u / 2-4 \cosh ^{2} u / 2\right]^{\frac{1}{2}}-x / 2 . \tag{21}
\end{equation*}
$$

and the same divided through by x, are not convenient for the purpose of calculation, but by means of the relation

$$
\begin{equation*}
\operatorname{sech}(U+u / 2)=(\sinh u / 2) / \frac{1}{2} x \tag{22}
\end{equation*}
$$

Curves of constant r, forming a numbered scale, the value of r being given at the right-hand end of each curve. Abscissæ are proportional to $\log _{10} x$, which ranges from 0.5 to $1 \cdot 18$, but a numbered scale of x is provided. Ordinates represent $\epsilon_{17^{\circ}}$.
obtained from (7) and (12), U, and therefore x, is easily obtained. Conveniently, the substituted form (in millivolts)

$$
\begin{equation*}
\operatorname{sech}\left[0 \cdot 04\left\{\left(E-E_{e}\right)_{17^{\circ}}+\frac{1}{2} \varepsilon_{17^{\circ}}\right\}\right]=\sinh \left[0 \cdot 04\left(\frac{1}{2} \varepsilon_{17^{*}}\right)\right] / \frac{1}{2} x \tag{22a}
\end{equation*}
$$

may be employed with the aid of Table I, which contains a useful range of values of the hyperbolic sine and secant, tabulated in parallel against 25 times the argument, so that $\sinh u$ and sech u, for instance, are to be found (in heavy and ordinary type, respectively) against $\varepsilon_{17^{\circ}}$. $\sinh \frac{1}{2} u$ is first found (against $\frac{1}{2} \varepsilon_{17^{\circ}}$) and divided by $\frac{1}{2} x$, and the quotient, which is sech ($U+\frac{1}{2} u$), is sought in the body of the table (figures in ordinary type). Then on moving back $\frac{1}{2} \varepsilon_{17}$. millivolts in the table, $\sinh U$, which is X, is found in the figures in heavy type.

This is the most exact form of the method, but the accuracy of the diagrams, particularly of Fig. 2, is in most cases as great as is justified by the precision with which x and ε are known.
5. There is theoretically an ambiguity in the determination, as may be seen from the symmetry of the curves in Fig. 1, or the alternative signs in equation (21). The found values of X and r might, in reality, be the values of $-(X+x)$, and $-(r+1)$, respectively; but this would mean that the end-point had been overstepped by a very large amount, viz., more than $\frac{1}{2} x$, and in practice the doubt will not arise, because an approximate determination will already have been made by Method I (see examples, Section 11). The latter will also enable the small correction $M m n / 2 S V^{\prime} V$, by which the exact form of x differs from the approximate form $m n / 2 S V^{\prime}$, to be applied with sufficient precision (it is often negligible). The result of the titration (M_{0}), as determined by Method II, depends upon (a) the quantities $\left(M_{0}-M\right), m, V$, and n, which may be regarded as accurately known; (b) the measured potential change ε, in which there is an absolute uncertainty dependent on the behaviour of the electrodes (Part I, Section 3); and (c) the assumed value of S.

Supposing S to be correctly known, it is clear that for a given absolute error in ε_{17}, the precision of the result, in terms of concentration, will be proportional to the absolute sensitivity of $\varepsilon_{17^{\circ}}$ to change in X, i.e., to the steepness of the curve in Fig. 1 at the point from which the reading would be taken. It can be shown that this sensitivity (the tangent of slope of these curves, in millivolts per unit of X) is $25[\operatorname{sech} U-\operatorname{sech}(U+u)$], which has a maximum value of 25 when $X=0$ and x is infinite; but Fig. 1 shows that this theoretical maximum sensitivity can be closely approached if X is small and x fairly large, i.e., if the final measurement of the potential of the electrode is made within about $\frac{1}{2}$ unit
(of reagent) of the end-point, and x is reckoned from a stage at least 5 or 6 units earlier.

An equally sensitive potential change occurs after the end-point has been passed, viz., between two stages, of which one is within $\frac{1}{2}$ unit of the end-point, and the other is at least 5 or 6 units later. This is the "ambiguous" case already mentioned. (This depends upon the use of the second half of the titration curve; but see Section 7.)

The prior use of Method I (upon the same sample of solution) enables these conditions to be fulfilled in a single titration. In this way, with ε defined to within ± 0.5 millivolt (compare Part I), the absolute uncertainty of the result of the titration can be reduced to little more than ± 0.02 unit (in terms of concentration $\pm 0.04 S$), provided S is known correctly. The probable error can be further reduced by making several potential measurements near the endpoint, using them for independent calculations of M_{0}, and averaging the results.
6. Error in the assumed value of S, on the other hand, will have a one-way effect, not to be reduced by averaging. It will produce an equal relative error in x, whose effect on the result can be gauged by means of Fig. 2. In this diagram the curves are lines of constant r, and from r the result of the titration follows without reference to S. The abscissæ are proportional to $\log x$, one large square representing a change of about 5% in x, so that an error of 5% in the assumed value of S will produce an error of one large square in the abscissa of the representative point. It follows that the slope of these curves represents the error in ε which would just cancel an error of 5% in S. The effect of the possible error in S is thus obtained as an equivalent error in ε, which should of course be kept smaller than the experimental uncertainty in ε. In the diagram three dotted lines of constant X have been inserted, viz., $X=1, X=0.5$, and $X=-0.5$ (they are roughly parallel to the line $X=r=0$), and it is seen that the error in ε which is equivalent to a 5% error in S is about 0.35 millivolt when $X=1$, nearly 0.7 millivolt when $X=0.5$, and about 1.25 millivolts at the endpoint, while at half a unit past the end-point (when $X=-0.5$) it is about 1.8 millivolts.

Thus on approaching within $\frac{1}{2}$ unit of the end-point with the object of obtaining the highest sensitivity in ε, it is necessary to know the value of S within $\pm 2 \%$; and when the uncertainty in S is appreciably greater than this, the best result is obtained by not approaching the end-point so closely.
7. This method depends upon the experimental realisation of only one-half of the titration curve expressed by equation (8).

It is applicable, for instance, to acidimetry with a quinhydrone electrode, and in the presence of carbon dioxide. Its main disadvantage is the necessity for fairly precise knowledge of the constant S, in order to obtain the highest precision. When, as in the case of the silver-chloride titration for example, the whole of the titration curve conforms to equation (8), a method becomes available which is free from this disadvantage, no knowledge of S being required.
8. Method III. Refined Method (S unknown).-This depends upon the measurement of two successive potential changes, ε and ε^{\prime}, corresponding to two successive additions of reagent, m and m^{\prime} c.c.; from these four quantities, together with the approximate volume of the solution at the intermediate stage, the result of the titration is calculated, without either assuming or determining the value of S. Thus three stages are involved, the two already considered ($M^{\prime}, V^{\prime}, E^{\prime}$, and M, V, E) to which equations (12) and (7) correspond, and a later stage $\left(M+m, V+m, E-\varepsilon^{\prime}\right)$, for which a similar equation may be written, viz.,

$$
\begin{equation*}
X-x=\sinh \left(U-u^{\prime}\right) \tag{23}
\end{equation*}
$$

so that $u^{\prime}=F \varepsilon / R T=0.04 \varepsilon^{\prime}{ }_{17}$, and

$$
\begin{equation*}
x^{\prime}=m^{\prime} n V_{e} / 2 S V\left(V+m^{\prime}\right) . \tag{24}
\end{equation*}
$$

From equations (7) and (12), the relation

$$
\begin{equation*}
X / x=\frac{1}{2}\left[\tanh \left(U+\frac{1}{2} u\right) \operatorname{coth} \frac{1}{2} u-1\right] \tag{25}
\end{equation*}
$$

is derived, and from (7) and (23), similarly,

$$
\begin{equation*}
X / x^{\prime}=\frac{1}{2}\left[\tanh \left(U-\frac{1}{2} u^{\prime}\right) \operatorname{coth} \frac{1}{2} u^{\prime}+1\right] . \tag{26}
\end{equation*}
$$

Between (25) and (26), U can be eliminated, giving
$2 X=\left(x \operatorname{coth} \frac{1}{2} u-x^{\prime} \operatorname{coth} \frac{1}{2} u^{\prime}\right) \operatorname{coth} \frac{1}{2}\left(u+u^{\prime}\right)-\left(x-x^{\prime}\right)$
By substituting for X, x, x^{\prime}, u, and u^{\prime}, making use of the function tabulated in Table I (Part I), and dividing throughout by $n V_{\epsilon} / S V^{2}$, one obtains

$$
\begin{array}{r}
\frac{M}{M}=\left[1+2 f\left(\varepsilon+\varepsilon^{\prime}\right)\right]\left[\frac{m \cdot f(\varepsilon)}{1-m / V}-\frac{m^{\prime} \cdot f\left(\varepsilon^{\prime}\right)}{1+m^{\prime} / V}\right]+ \\
f\left(\varepsilon+\varepsilon^{\prime}\right)\left[\frac{m}{1-m / V}-\frac{m^{\prime}}{1+m^{\prime} / V}\right] . \tag{28}
\end{array}
$$

When the values of $\varepsilon, \varepsilon^{\prime}, m, m^{\prime}$, and the approximate value of V are inserted (from experiment) this equation reduces to a linear equation for M (which gives the result of the titration).

In practice ($\varepsilon+\varepsilon^{\prime}$) is of the order of 100 millivolts or more, and m and m^{\prime} are not large fractions of V, so approximation gives

$$
\begin{equation*}
M(\text { app. })=m_{c} \cdot f(\varepsilon)-m_{c}{ }_{c}^{\prime} f\left(\varepsilon^{\prime}\right) \tag{29}
\end{equation*}
$$

where $m_{c}=m+m^{2} / V$, and $m_{c}{ }^{\prime}=m^{\prime}-m^{\prime 2} / V$. The small terms neglected in this approximation are almost exactly
(Small terms) $\quad M^{2}$ (app.) $/ V+\left[m^{2} / V^{2} \cdot m_{c} . f(\varepsilon)-\right.$

$$
\begin{equation*}
\left.m^{\prime 2} / V^{2} \cdot m_{c}^{\prime} \cdot f\left(\varepsilon^{\prime}\right)\right]+f\left(\varepsilon+\varepsilon^{\prime}\right)\left[2 M(\text { app. })+\left(m_{c}-m_{c}^{\prime}\right)\right] . \tag{30}
\end{equation*}
$$

In the examples given in Section 11, these small terms are in each case roughly evaluated and added to the approximate result obtained by the use of (29), but, as may be seen, the correction is only of the same order of magnitude as the uncertainty of the result.
9. Alternatively a graphical method of calculation may be used. When divided throughout by $2 x$, equation (27) gives (in terms of the function f)
$r=X / x=\left[1+2 f\left(\varepsilon+\varepsilon^{\prime}\right)\right]\left[f(\varepsilon)-a . f\left(\varepsilon^{\prime}\right)\right]+f\left(\varepsilon+\varepsilon^{\prime}\right)[1-a]$.
where $a=x^{\prime} \mid x=m^{\prime}(V-m) / m\left(V+m^{\prime}\right)$. This relation can be expressed graphically for any fixed value of a. Fig. 3 represents the case where $x^{\prime}=x$, and

$$
\begin{equation*}
r=\left[1+2 f\left(\varepsilon+\varepsilon^{\prime}\right)\right]\left[f(\varepsilon)-f\left(\varepsilon^{\prime}\right)\right] . . \tag{32}
\end{equation*}
$$

If the second addition of reagent $\left(m^{\prime}\right)$ is made such that

$$
\begin{equation*}
m^{\prime}=m /(1-2 m / V) . \tag{33}
\end{equation*}
$$

the condition $x=x^{\prime}$ is fulfilled, and the measured potential changes ε and ε^{\prime} (corrected to 17°) then fix a point on this diagram, whose position on the scale formed by the curves gives the value of r; whence the result of the titration follows by equation (19) or (20).
10. Conditions for Precision of Method III.-If the second of the three stages concerned is within $\frac{1}{2}$ unit of the end-point (on either side of it), and the other two stages are at least 5 units earlier and later, respectively, both the potential changes will be of high sensitivity (see Section 5), and it is obvious that these are the conditions for high precision by this method (but see Section 13). Knowledge of the value of the constant S is not required, although a rough estimate of it is useful in arranging the conditions. It is really only necessary, however, that the intermediate stage should be as near as can be judged (by use of Method I) to the end-point, and that the two potential changes should be of the order of 50 millivolts or more.

11. Results.

Some examples of the application of Method III (chiefly) are recorded below. Apparatus and materials were essentially as in Part I, and the gradual fall of the potential of the quinhydrone electrode, due to dilution of the acid present by the added reagent, was allowed for by correcting the measured potentials to a constant
volume such as 100 or 1000 c.c. (according to Part I, Section 11). This correction is given under the heading " Corr."

Fig. 3.

Curves of constant r, forming a numbered scale (the value of r is given at the right-hand end of each curve). Subject to the condition that $x^{\prime}=x$, i.e., that $m^{\prime}=m /(1-2 m / V)$, the ordinate represents the first of the two successive potential changes $\left(\epsilon_{17^{\circ}}\right)$, and the abscissa the second $\left(\epsilon_{17^{\circ}}\right)$, and the position of the point so defined, on the scale of r formed by the curves, gives the value of r. The dotted lines are typical lines of constant $X^{\prime} X=+0.5$ and $X=-0.5$) and of constant $x(x=3,4$, and 8$)$.

Example 1. 1000 C.c. $N / 1000-\mathrm{KCl}$ titrated by $N / 100-\mathrm{AgNO}_{3}$ (temp. $\approx 14 \cdot 5^{\circ}$).
(Actually known to be equivalent to $98 \cdot 5$ c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / 2000$.)
By Method I (see Part I, Section 10, Example 3) from stages 0 , I, and II, the number (M) of c.c. of reagent still required at Stage II, is found to be about 13.7 . Hence 13 c.c. are now added, and afterwards a further 12 c.c. (the unit $2 S V^{\prime} / n$ being roughly 2.5 c.c.); the corresponding potentials are measured (Stages III and IV) and (together with $E_{\text {II }}$) corrected (a) to 17° by addition of the small correction, $E / 120$ (see Part I, Section 5), and (b) to 1000 c.c. volume as regards the quinhydrone electrode.

	$M_{0}-M$					
Stage.	$M_{0}-M$.	1000	Corr.	E (expt.)	$E_{17^{\circ}}$.	E (corr.)
II	85	0.085	2.0	$172 \cdot 2$	173.6	$175 \cdot 6$
III	98	0.098	2.3	$118 \cdot 1$	119.1	121.4
IV	110	0.110	2.6	58.3	58.8	61.4

Then from the potential changes, ε and ε^{\prime} (Stages II-III and III-IV, respectively), and the corresponding additions of reagent, m and m^{\prime}, together with the approximate volume $V(=1100$ at Stage III), the amount of reagent still required at Stage III [M (app.)] is calculated by equation (29), and so by addition of ($M_{0}-M$), which is 98 at Stage III, the result M_{0} (app.) is obtained. The small terms are then approximately evaluated by the formula (30) and added, to obtain the final M_{0}.

Stages. III-III	6. 54.2 60.0	$\begin{gathered} f(\epsilon) . \\ 0-1292 \\ 0.0998 \\ \hline \end{gathered}$	m. 13 12	$\begin{aligned} & \pm m^{2} / V . \\ & +0.15 \\ & +{ }_{-0.13}^{+0.15} \\ & \hline \end{aligned}$	$\begin{array}{r} m_{c} \cdot \\ 13.15 \\ -11.87 \\ \hline \end{array}$	$\begin{gathered} m_{c} \cdot f(\epsilon) . \\ 1.699 \\ 1.185 \\ \hline \end{gathered}$	$\begin{gathered} m^{2} / V^{2} \cdot m_{c} \cdot f(\epsilon) \\ 0.0002 \\ 0.0001 \\ \hline \end{gathered}$
	$\left.+\epsilon^{\prime}\right)$	0.0105		$-m_{c}^{\prime}$) $=$	1.28	$\begin{aligned} M \text { (app.) } & =0.51_{\mathrm{s}} \\ M_{0}(\text { app. }) & =98.51_{6} \end{aligned}$	Diff. $=0.0001$
Small terms : $\{0.0003+0.0001+0.0105[2 \times 0.515+1.28]\} \approx 0.025$. $M_{0}=98.54 . \quad$ Error $=+0.04 \%$							

Example 2. 100 C.c. $N / 1000-\mathrm{KCl}$ titrated by $N / 1000-\mathrm{AgNO}_{3}$ (temp. $\approx 20^{\circ}$).
(Actually known to be equivalent to $98 \cdot 5$ c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / 4000$.)
By Method I (see Part I, Example 4) the amount of reagent still required at Stage II is found to be about 24 c.c.; 21 c.c. are added (the unit $2 S V / n$ being roughly 5 c.c.) followed by 4 c.c. and then a further 25 c.c., the corresponding potentials (Stages III, IV, and V) being measured, and corrections being made to 17° and 100 c.c.

		$M_{0}-M$				
Stage.	$M_{0}-M$.	100		Corr.	E (expt.)	$E_{17}{ }^{\circ}$.

Two independent calculations are now made, from Stages IIIII—V and from Stages II—IV—V, respectively, each as in Example 1 , and the results averaged.

$$
\begin{aligned}
& \text { (a) From Stages II, III, and V. } \quad \nabla=196 \text { (Stage III). } \\
& \text { Small terms : }[0.028+0.008+0.0104\{2 \times 2.33-1.46\}] \approx 0.069 \\
& M_{0}=98.39_{\mathrm{s}} . \quad \text { Error }=-0.11 \% . \\
& \text { (b) From Stages II, IV, and V. } \quad V=200 \text { (Stage IV). } \\
& \text { Small terms : }\{0.011-0.023+0.0104[2 \times(-1.48)+6.26]\} \approx 0.02_{2} \\
& M_{0}=98.54 . \quad \text { Error }=+0.04 \% . \\
& \text { Mean result from (a) and (b) : } M_{0} \text { (mean) }=98.47 \text {. Error }=-0.03 \% \text {. }
\end{aligned}
$$

Example 3. 1000 C.c. $N / 10,000-\mathrm{KCl}$ titrated by $N / 1000-\mathrm{AgNO}_{3}$ (temp. $\approx 17^{\circ}$).
(Actually known to be equivalent to $98 \cdot 5$ c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / \mathbf{1 5 , 0 0 0}$.)
The unit $2 S V / n$ being approximately 25 c.c., Method I is inapplicable from the commencement, the end-point being too near. The first approximation is therefore obtained by Method II, on the assumption that the unit is about 25 c.c.; 15 c.c. of reagent are added and the initial potential is measured. Then 50 c.c. (2 units) more are added and the second potential is measured. The potentials are corrected to 1000 c.c. as regards the quinhydrone electrode, and subtracted. From the curve, $x=2$ (Fig. 1), the value of X corresponding to the change of potential (ε) is read, and multiplied by 25 , thus giving M (app.).

$M_{0}-M$									
Stage.	$M_{0}-M$.	1000	Corr.	E (expt.).	E (cor	є. m.		x^{\prime}.	M (app.).
0	15	0.015	$0 \cdot 4$	167.9	168.3				
I	65	0.065	$1 \cdot 6$	$145 \cdot 5$	147•1	21.250	2	$1 \cdot 25$	31.3

Addition of the correction ($M M^{\prime} / V^{\prime} \approx 2 \cdot 5$) for change in the unit gives $M=33 \cdot 8, M_{0}=98.8$.

Assuming, therefore, that about 34 c.c. of reagent are still required at Stage II, one adds, first, 25 c.c., then successively 10 c.c., 10 c.c.,
and 100 c.c., measuring the four corresponding potentials and correcting as before.

	$M_{0}-M$				
Stage.	$M_{0}-M$.	1000		Corr.	E (expt.).

Then three calculations are made (from 0-II-V, from 0-IIIV, and from 0-IV-V, respectively), each as in Example 1, and the results averaged.

(c) From Stages 0, IV, and V. $V=1110$ (Stage IV).

$0-\mathrm{IV}$	58.5	0.1066	95	+8.13	$103 \cdot 13$
IV—V	$41 \cdot 0$	0.2407	100	-9.01	90.99

Small terms : $\{0.11-0.10+0.019[2 \times(-10.9)+12.1]\} \approx-0.17$
$M_{0}=98 \cdot 9_{2}$. Error $=+0.4_{2} \%$.
Mean result from (a), (b), and (c): $\underline{M}_{\mathbf{0}}$ (mean) $=98.8_{5}$. Error $=+0.3_{5} \%$.
12. Determination of the End-point Potential, and of the Constant S .-The result of the titration is obtained without calculating either of these quantities. Both, however, may be calculated from the measurements if they are of interest, and this is probably the most exact method of determining them. Various formulæ might be given for the calculation of E_{c}. For instance from equation (25) the relation

$$
\begin{equation*}
f\left[\varepsilon_{17^{\cdot}}+2\left(E-E_{\epsilon}\right)_{17^{\circ}}\right]=[f(\varepsilon)-r] /(1+2 r) \tag{34}
\end{equation*}
$$

or, alternatively,

$$
\begin{equation*}
f\left(2 E-2 E_{e}\right)_{17^{\circ}}=\left[1+f\left(\varepsilon_{17^{\circ}}\right)\right]\left[f\left(\varepsilon_{17^{\circ}}\right) / r-1\right] /\left[1+2 f\left(\varepsilon_{17^{\circ}}\right)\right] \tag{34a}
\end{equation*}
$$

is obtained, which enables E_{e} to be evaluated by means of Table I (Part I), the value of r being obtained either directly by equation (31), or from the result of the titration and equation (19).

When E_{e} is known, U is known, and S can then be calculated by the formula

$$
\begin{align*}
& 2 S=\frac{n\left(m+m^{\prime}\right)}{(\bar{V}-m) \sinh (u+\bar{U})+\left(\bar{V}+m^{\prime}\right) \sinh \left(u^{\prime}-\bar{U}\right)} \tag{35}\\
& =\frac{n\left(m+m^{\prime}\right)}{(V-m) \sinh \left[0 \cdot 04\left\{\varepsilon_{17^{\circ}}+\overline{\left(E-E_{e}\right)} \overline{\left(V_{17}\right\}}\right]\right)+} \tag{36}\\
& \left(V^{\prime}+m^{\prime}\right) \sinh \left[0 \cdot 04\left\{\varepsilon^{\prime}{ }_{17^{\circ}}-\left(E-E_{\epsilon}\right)_{17}\right\}\right]
\end{align*}
$$

the hyperbolic sines being obtained from Table I (this Part).
The precise measurement of E_{e} under standard conditions is of interest in connexion with " absolute" methods of potentiometric titration (see Part I and previous paper, loc. cit.), whilst the value of S is required in Method II, described above.
13. Precision of Method III, and Dependence on the Constancy of S.-Analytically the small error ($d M$) in M due to small errors, $d u$ and $d u^{\prime}$, in u and u^{\prime}, can be estimated by the equation

$$
\begin{equation*}
\underset{2 \bar{S} \bar{V}}{n} \cdot d M=\frac{p \cdot d u^{\prime}-d u}{\Delta \operatorname{sech} \bar{U}+p \Delta^{\prime} \operatorname{sech} \bar{U}} \tag{37}
\end{equation*}
$$

where Δ sech U and Δ^{\prime} sech U represent $\left[\right.$ sech $U-\left(V / V^{\prime}\right)$ sech $(U+u)]$ and $\left[\operatorname{sech} U-V /\left(V+m^{\prime}\right) . \operatorname{sech}(U-u)\right]$ respectively, and

$$
p=[\tanh (U+u)-\tanh U] /[\tanh U-\tanh (U-u)] .
$$

Thus p represents the relative importance of equal errors in u and u^{\prime} (p is also the expression for the slope of the curves in Fig. 3). The conditions for high precision are easily deduced from equation (37). Under the ideal conditions ($X=0$ and both x and x^{\prime} are infinite), it reduces to $(n / 2 S V) \cdot d M=\frac{1}{2}\left(d u^{\prime}-d u\right)$, showing that (under these conditions) equal errors in u and u^{\prime} will cancel if in the same direction, and if in opposite directions will have the same effect as a single error of the same magnitude as either in u in Method II. Thus the minimum absolute uncertainty is the same as for Method II, but the probable error is less, and also the precision is not dependent on knowledge of S.

With regard to the effect of slight variation of S during the course of a titration, it can be shown that if it changes by 1% between the first and second of the three stages the effect will be equivalent to an error of about 0.25 millivolt in the first potential change (ε); and similarly as between the second and third stages. The effects on the result are in the same direction when the variations in S are in the same direction.

Summary.

The methods described depend on the changes of the potential of the indicator-electrode, not on the particular values of the potential. Method I (see Part I) is applicable in all ordinary
cases, where an absolute uncertainty of the order of one-fifth or one-seventh of the solubility of silver chloride (or the corresponding constant) is permissible. A first tentative addition of reagent is made, and from the resulting potential change an approximate estimate of the amount still required is obtained by the use of Table I. Nearly this amount is then added, and the small residual deficiency is precisely evaluated by the same means. Precision depends chiefly on the closeness of approach to the end-point, which in the most dilute solutions is limited by the incompleteness of the reaction (which would invalidate the method) in the neighbourhood of the end-point.
The other two methods (Part II), essentially for very dilute solutions, are of a somewhat higher order of absolute precision. Method II is the extension of Method I to and beyond the endpoint, depending upon fairly precise knowledge of the constant S (the solubility of silver chloride in the solution), and the use either of a set of accurately drawn curves (Figs. 1 and 2) or of a numerical table (Table I, Part II).

Method III is independent of knowledge of the constant S. From the two potential changes produced by two successive additions of reagent, the result of the titration is accurately obtained, either by a simple calculation with the aid of Table I or by the use of a set of curves (Fig. 3).

Methods II and III depend upon the conformity of the titration curve (on one side of the end-point, for Method II; on both sides for Method III) to a slightly simplified form of a general equation (Part II, Section 1) deduced (on the assumption of a reversible electrode) on thermodynamic grounds only.

Thanks are due to the Trustees of the Brunner Mond Research Fund out of which the cost of apparatus used in this research was defrayed.

[^0]
[^0]: The University of Manchester.
 [Received, October 29th, 1927.]

